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APPENDIX B
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A General Reciprocity Theorem
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Abstract—A general reciprocity theorem based on the Onsager relations
is developed which applies to all causal and linear media, including those
whose ac susceptibilities depend on an applied dc magnetic field and on the
de drift velocity of charge carriers. Applications are made to the scattering
matrix for microwave junctions and to the mode orthogonality relations for
uniform and periodic waveguides.
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1. INTRODUCTION

NE OF THE BASIC theorems of electromagnetic

theory is the reciprocity theorem. There has been a
long history of contributions to its development [1]-[6]. It
is the purpose of this contribution to extend the range of
applicability of the reciprocity theorem and to provide a
physical basis for it through the Onsager relations. The
requirements are only that the media in the region under
consideration be causal and linear; they may be either
passive or active. In particular, media whose ac suscept-
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ibilities may depend on an applied dc¢ magnetic field and
(or) the dc drift velocity of charge carriers are included.
Applications of this general reciprocity theorem to the
form of the scattering matrix for microwave junctions,
and to the orthogonality of modes in uniform and peri-
odic waveguides, are noted.

II. GeNErRAL ReciProciTY THEOREM

The physical basis of the general reciprocity theorem is
first established. Consider the excitation at frequency w of
a time invariant medium by a force F with a resulting
response R. If the medium is causal and linear, R =x(w)-
F, where x(w) is the susceptibility. For example, F might
be the electric field, R the electric polarization, and x(w)
the electric susceptibility of a dielectric. More generally, x
may be dependent on an applied dc magnetic field H; and
(or) the dc drift velocity v, of charge carriers in the
medium x(w,Hjy,vy). For example, a ferrite with a dc
applied magnetic field H,, has an ac magnetic susceptibil-
ity which depends on H, while an electron beam has
susceptibilities which, in general, will depend on both the
dc drift velocity of the electrons and the dc magnetic
focusing field.

Onsager [7] applied the principle of the time-reversal
invariance of the microscopic equations of motion to
show that any macroscopic susceptibility of a causal lin-
ear medium must satisfy the relation

x(w) =%(w)-
Here, x denotes the transpose of x. Including the possible
dependence on the dc magnetic field [8], [9] and on the dc
drift velocity of charge carriers [10], one finds that

X(w’ - HO’ - 'UO) =X(waH0, 1-70)' (1)

More precisely, (1) applies when F and R both change
sign, or neither changes sign, under time reversal. If one
changes sign under time reversal and the other does not,
then a minus sign should be inserted on the right side of
(1). Note that both H,, and v, may vary in magnitude and
direction through the medium. Also note that (1) is inde-
pendent of the presence of any d¢ electric field, except in
so far as it affects the dc drift velocity of the charge
carriers. Equation (1) applies to the susceptibilities for all
media, both passive and active, so long as they are causal
and linear.

A common representation of the reciprocity theorem is
given in

JI[EXH —E'xH)-dS=[[[[E'-J,—EJ]]dV. (2)

Here, E, H and E’, H’' are two independent electromag-
netic field configurations produced by source current den-
sities J, and J/, respectively, at frequency w. The surface
integral on the left side of (2) is over any surface contain-
ing the source current densities included in the volume
integral on the right side.

With (1) established, the range of applicability of the
reciprocity theorem represented by (2) is very broad, and
it applies to any region containing causal and linear
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media. E, H, and J, are the electromagnetic field and
source current density (frequency w) for a particular ex-
citation of the region. E’, H’, and J are the values for an
independent excitation of the region (frequency w), but
with the applied dc magnetic field and dc drift velocity of
the charge carriers reversed. For example, the reciprocity
theorem applies to semiconductor, ferrite, magnetoelec-
tric, electron beam, plasma, maser, and laser media in the
linear regime.

Using this result for the reciprocity theorem, and
following the procedure of [3], one can show that the
scattering matrix for a microwave junction must satisfy

S(w, — Hy, — vy) = S(w, Hy, v,). (3)

Equation (3) applies to any microwave junction contain-
ing causal and linear media, and junctions using any, or
several, of the media listed above are included.

HI. MobpE ORTHOGONALITY IN WAVEGUIDES

Based on the general reciprocity theorem, a general
mode orthogonality relation for uniform waveguides can
be derived

fj [ETm X H;‘n - E;‘n X HTm]'azdxdy =0.

The unprimed symbols refer to the modal electromagnetic
field of the mth mode of the original waveguide, and the
primed symbols refer to the modal electromagnetic ficld
of the nth mode of the complementary waveguide (dc
magnetic field and dc drift velocity of the charge carriers
reversed).

A general-mode orthogonality relation for periodic
waveguides can also be derived. This is discussed in some
detail here, because the author has been unable to locate
in the published literature any prior derivation of the
mode orthogonality relation for periodic waveguides.

From Floquet’s theorem, the fields of the mth mode of
a periodic waveguide with period L can be written as

(4)

E (x,y,2)=E,(x,y,2) exp [ = ¥pz]
= 2 Emp(x’y) €Xp [ - ‘YmpZ]
P
ﬁm(x,y,z) =H,(x,y,z) exp [ —¥,7]
= 3 H,,(x.9) exp [~ 2],
P
Here, E,,H,,, are the space harmonic components, and
Yomp=Ym+J2up/ L is the propagation constant of the pth
space harmonic of the mth mode. These fields satisfy the
Floquet condition, E, (x,y,z+ L)=E,(x,y,z), etc. A simi-
lar set of fields with primed symbols is defined for the
complementary waveguide with H, and v, reversed.
Set P,,=[EXH,—E,xH, and consider V-P,.
Using (1) it is easy to show that V.P, =0. Integrating
over one period of the waveguide (from z, to z, + L, where

z, is arbitrary) and using the divergence theorem, one
obtains

JIIV P, dV=[[P,, adS=0 )
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where a, is a unit vector normal to the surface bounding
the volume. The contribution to the surface integral from
the transverse boundaries of the waveguide is zero be-
cause of the boundary conditions for the modal fields.
This leaves two integrals over the cross sections at z; and
z;+ L. Substituting in the modal fields and using the
Floquet condition, (5) can be written as

exp [ — (vt vz J(exp [~ (vt v)L]—1)
ff[ETm x”?"n —ETI“n XHTm]'azdxdy:(l

Here the integral is over the cross section of the wave-
guide at z,, and it involves only the transverse compo-
nents of the modal fields. For v, % — v,

ff[ETmXH;'n_ETI'nXHTm:‘.azdxdy=O' (6)

This is the general-mode orthogonality relation for peri-
odic waveguides. More precisely, (6) holds for v, —v,, +
j2mq/ L, where q is any integer. If y,# —v,,, one would
not expect vy, = —v,, +/2mq/ L except, possibly, at isolated
frequencies.

An alternative form for this mode orthogonality rela-
tion involving the space harmonic components can be
derived. Integrate (6) in z over one period of the wave-
guide, expressing E,,, in terms of the space harmonic
components, Ep,,, =2 Er,,, exp [—j2apz /L), etc. From the
orthogonality of the exponential functions on any interval
of length L, one obtains (y,# —v,,)

EII{ETWXH;'n,—p_ %n,—pXHTnp].azdx@=0' (7)
F4

This is the second form of the general-mode orthogonality
relation for periodic waveguides. These mode orthogonal-
ity relations, (6) and (7), hold for all periodic waveguides
whose media are causal and linear. The media may be
inhomogeneous, anisotropic, and passive or active.

IV. SuMMARY

In summary, this paper has established that the physical
basis of a general reciprocity theorem is, through the
Onsager relations, the time-reversal invariance of the mi-
croscopic equations of motion for linear media. The re-
ciprocity theorem applies to all causal and linear media,
including those whose ac susceptibilities depend on an
applied dc magnetic field and on the dc drift velocity of
charge carriers. The reciprocity theorem applies, for exam-
ple, to semiconductor, ferrite, magnetoelectric, electron
beam, plasma, maser, and laser media in the linear reg-
ime; the media may be either passive or active. As a direct
consequence, the general scattering matrix relation given
in (3) holds for all microwave junctions containing such
media.
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Application of the reciprocity theorem yields the gen-
eral mode orthogonality relation for uniform waveguides
given in (4). In addition, the general mode orthogonality
relations for periodic waveguides given in (6) and (7) were
derived. Again, the physical basis for all of these mode
orthogonality relations is the time-reversal invariance of
the microscopic equations of motion for linear media
(through the Onsager relations).

The final comment concerns the general Onsager rela-
tions given in (1). Some anisotropic media may exhibit
spatial dispersion as well as temporal dispersion, at least
in some wavelength ranges. That is, one or more of the
susceptibilities may show an explicit dependence on the
phase constant as well as the frequency. Examples of such
media are plasmas [11], ferrites in the spin wave region
[12], and electron beams [13]. For regions containing
spatially dispersive media, the susceptibilities must satisfy
the relation

X(wa I HO’ - Uo) =}~((w, 'Y,H07 1-70)

in order to obtain the general reciprocity theorem.
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